Data, Methods, and Tips for Health Workforce Supply and Demand Modeling

May 14, 2014

By Tim Dall
Goals

• To describe alternative approaches to health workforce supply and demand modeling at the national, state, and local levels
• To discuss data sources
• To share tips and best practices to help ensure study success
Agenda

• Terms and definitions
• Demand modeling
 – Evolution of health workforce modeling
 – Advantages and disadvantages of alternative approaches
 – Data and methods
• Supply modeling
 – Evolution of health workforce modeling
 – Advantages and disadvantages of alternative approaches
 – Data and methods
• Tips for improving workforce study success
Terms and Definitions

• Health care services
 – Demand: amount of services that people are willing to use at different price points
 – Utilization: actual use (usually analyzed in the form of medical claims)
 – Need: an informed opinion on the level of services that would be appropriate

• Workforce “requirements”
 – Demand: number and mix of health workers to meet demand for services
 – Need: an informed opinion on the number and mix of health workers to meet the need for services
 • Minimum need
 • Best practices
Terms and Definitions, cont.

• Supply
 – Licensed: health workers eligible to work
 – Active: health workers employed or seeking employment in an area that requires their clinical skills or knowledge
 – Full time equivalent (FTE): “standardized” measure of active supply taking into account part time workers
 • Example 1: Full time = 1 FTE; part time = ½ FTE
 • Example 2: FTE = average patient care hours worked among providers working at least 30 hours per week

• Adequacy of supply
 – Shortfall: Demand exceeds supply
 – Surplus (excess supply): Supply exceeds demand
 – Equilibrium: Supply equals demand (± X%)
Terms and Definitions, cont.

• Models

“A model is a mathematical framework representing some aspects of reality at a sufficient level of detail to inform a clinical or policy decision” \(^1\)

Demand Modeling

- Drivers of demand for services and providers
- Modeling approaches
- Data and model inputs
Drivers of Demand for Health Care Services

• Epidemiological factors (need, or perceived need)
 – Correlated with demographics (particularly age)
 – Correlated with other health risk factors (e.g., disease presence)

• Price and socioeconomic factors (ability/willingness to pay)
 – If a person has medical insurance, the correlation between use of health care services and household income largely disappears

• Health care system characteristics and economic considerations
 – Reimbursement/ what services are covered, value-based pricing
 – Provider-induced demand
 – Defensive medicine

• Technology (treatment possibilities)

• Societal norms and expectations
Drivers of Demand for Health Care Providers

• Demand for services
 – Mix of services by condition and care delivery setting
 – Complexity of services

• Provider characteristics
 – Scope of practice
 – Cost or relative value (e.g., physician assistant vs physician)
Models Differ in Approach, Complexity, and Value

Demand Models

- **Provider-to-population ratios** (benchmarking)
 - Examples: Weiner, HMO Model (1994)

- **Correlation analysis** (econometric)
 - Examples: Cooper, Trend Model (2002)

- **Macrosimulation** (population based)
 - Examples: HRSA Models 1990s-2012

- **Microsimulation** (person based)
 - Examples: HRSA Models 2013+, IHS Models, SHEPS Models

Needs-based Models

- **Provider-to-population ratios, benchmarking**
 - Examples: HRSA HPSA designations

- **Expert Panels Need/demand hybrid**
 - Examples: GMENAC(1970s)

- **Simulation**
 - Examples: Application of HRSA, IHS, SHEPS models
FTE Practitioner Use per 100,000 Population, by Age Group (based on utilization patterns)

HRSA (2013): Projecting the Supply and Demand for Primary Care Practitioners Through 2020
Demand for FTE Primary Care Providers/10K Population

- Non-Hispanic, black, female, age 75+, insured, with diabetes, with hypertension, obese: **26** FTE/10,000 population

- Non-Hispanic, black, female, age 75+, insured, no diabetes, no hypertension, normal weight: **8.6** FTE/10,000 population

- Non-Hispanic, black, male, age 18-34, insured, with diabetes, with hypertension, obese: **5.9** FTE/10,000 population

- Non-Hispanic, black, female, age 18-34, insured, no diabetes, no hypertension, normal weight: **2.4** FTE/10,000 population
Cooper’s Economic Trend Model

- Healthcare system too complex to model, so identify few key drivers of demand
- Our demand is limited primarily by our ability to pay for services
- “The major trend affecting demand for physician services is the economy.” (income elasticity = 0.75)
- “Population growth is a second major factor that affects demand for physicians.”
Tim’s Apple Trend Model

• Key findings
 − A major trend affecting demand for physician services is apple consumption
 − Consumption of 118,000 apples reduces physician demand by 1
 − National per capita consumption of an apple/day reduces physician demand to zero

• Key implication
 − “An apple a day keeps the doctor away”

Source: Analysis of per capita apple consumption: 1970 - 2004

\[
y = -2.557x + 284.23
\]

The Source for Critical Information and Insight™

IHS
Limitations of Historical Approaches to Modeling Demand

- Population averages (provider-to-pop ratios) inflexible for modeling
 - Geographic variation in health risk factors other than demographics
 - Paradigm shifts in care delivery
 - Policy changes such as Health Care Reform
- Few demand drivers (demographics, income, insurance, HMOs)
- Reliance on key assumptions (e.g., economic growth, HMO growth)
- Expert panel limitations
 - Convolution of “need” versus “demand”
 - Bias: e.g., physicians and nurse practitioners likely have very different views on scope of practice and implications for provider demand
- Static models
 - Utilization is independent of supply
 - Provider demand is independent of other “factors of production”
Healthcare Demand Microsimulation Model: Overview

Utilization Patterns
Relationship between patient characteristics and health care use

Population Database
Demographic, socioeconomic, & health risk factors

External Factors
Trends or changes in policy, prices, economic conditions, technology

Service and Product Demand
- Hospital
 - Inpatient Days
 By diagnosis category
 - Emergency Visits
 By diagnosis category
- Ambulatory
 - Provider Office Visits
 By occupation/specialty
 - Outpatient Clinic Visits
 By occupation/specialty
 - Dentist Office Visits
 By occupation/specialty
- Post-acute/Long Term
 - Nursing Facilities
 - Residential Care
 - Home & Hospice Visits
 By occupation

Staffing Patterns
By occupation/specialty & setting

Health Workforce Demand
By occupation/specialty and setting

Other Employment
- Public health
- School health
- Academia
- Other
Develop Representative Sample of Current and Future Population to Model Demand

Combines:
Behavioral Risk Factor Surveillance System (BRFSS)
American Community Survey (ACS)
National Nursing Home Survey (NNHS)
Create Population Database

• ACS-BRFSS match based on same state, age group, gender, race/ethnicity, income level, insurance status

• ACS-NNHS match based on same age group, gender, race/ethnicity
Project Demand for Services: Chronic Disease Example

Source: Dall et al., 2013, Health Affairs
Example: Healthcare Utilization for Cardiologist and Cardiology-Related Services

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Office Visits</th>
<th>Outpatient Visits</th>
<th>Emergency Visits</th>
<th>Hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic</td>
<td>0.78**</td>
<td>0.67**</td>
<td>1.02**</td>
<td>0.86**</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>0.73**</td>
<td>2.15**</td>
<td>1.41**</td>
<td>1.34**</td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>0.93**</td>
<td>1.31**</td>
<td>0.96**</td>
<td>0.97**</td>
</tr>
<tr>
<td>Non-Hispanic other race</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Male</td>
<td>1.13**</td>
<td>1.62**</td>
<td>0.92**</td>
<td>0.99</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-34 years</td>
<td>0.13**</td>
<td>0.12**</td>
<td>0.45**</td>
<td>0.25**</td>
</tr>
<tr>
<td>35-44 years</td>
<td>0.32**</td>
<td>0.59**</td>
<td>0.84**</td>
<td>0.53**</td>
</tr>
<tr>
<td>45-64 years</td>
<td>0.53**</td>
<td>0.72**</td>
<td>0.83**</td>
<td>0.69**</td>
</tr>
<tr>
<td>65-74 years</td>
<td>0.88**</td>
<td>1.35**</td>
<td>0.91**</td>
<td>0.90**</td>
</tr>
<tr>
<td>75+ years</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Smoker</td>
<td>0.77**</td>
<td>0.62**</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>Diagnosed With</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.34**</td>
<td>1.31**</td>
<td>2.50**</td>
<td>1.91**</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>7.03**</td>
<td>6.37**</td>
<td>2.60**</td>
<td>3.39**</td>
</tr>
<tr>
<td>History of heart attack</td>
<td>1.61**</td>
<td>1.90**</td>
<td>2.50**</td>
<td>2.58**</td>
</tr>
<tr>
<td>History of stroke</td>
<td>1.07**</td>
<td>0.80**</td>
<td>2.38**</td>
<td>2.53**</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.18**</td>
<td>1.51**</td>
<td>1.08**</td>
<td>1.25**</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1.02**</td>
<td>1.32**</td>
<td>0.94**</td>
<td>0.89**</td>
</tr>
<tr>
<td>Asthma</td>
<td>1.04**</td>
<td>1.06**</td>
<td>1.05**</td>
<td>1.09**</td>
</tr>
<tr>
<td>History of cancer</td>
<td>1.15**</td>
<td>0.83**</td>
<td>0.93**</td>
<td>0.91**</td>
</tr>
<tr>
<td>Insured</td>
<td>1.56**</td>
<td>1.14**</td>
<td>0.76**</td>
<td>0.99</td>
</tr>
<tr>
<td>Medicaid</td>
<td>1.29**</td>
<td>1.59**</td>
<td>1.57**</td>
<td>1.42**</td>
</tr>
<tr>
<td>Household income</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< $10,000</td>
<td>0.89**</td>
<td>0.64</td>
<td>1.66**</td>
<td>1.53**</td>
</tr>
<tr>
<td>$10,000 to < $15,000</td>
<td>0.83**</td>
<td>0.64**</td>
<td>1.36**</td>
<td>1.51**</td>
</tr>
<tr>
<td>$15,000 to < $20,000</td>
<td>0.85**</td>
<td>0.86**</td>
<td>1.10**</td>
<td>1.28</td>
</tr>
<tr>
<td>$20,000 to < $25,000</td>
<td>0.93**</td>
<td>0.39**</td>
<td>1.35**</td>
<td>1.32</td>
</tr>
<tr>
<td>$25,000 to < $35,000</td>
<td>0.88**</td>
<td>0.78**</td>
<td>1.56**</td>
<td>1.36**</td>
</tr>
<tr>
<td>$35,000 to < $50,000</td>
<td>1.03**</td>
<td>0.69**</td>
<td>1.17**</td>
<td>1.16**</td>
</tr>
<tr>
<td>$50,000 to < $75,000</td>
<td>0.99</td>
<td>0.80**</td>
<td>1.06**</td>
<td>1.09**</td>
</tr>
<tr>
<td>$75,000 or higher</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Body weight</td>
<td>Not available</td>
<td>0.89**</td>
<td>0.89**</td>
<td>2.26**</td>
</tr>
<tr>
<td>Normal</td>
<td>0.97**</td>
<td>0.97</td>
<td>1.14**</td>
<td>1.02</td>
</tr>
<tr>
<td>Overweight</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Obese</td>
<td>1.04**</td>
<td>0.69**</td>
<td>1.09**</td>
<td>1.12</td>
</tr>
<tr>
<td>Metro area</td>
<td>1.35**</td>
<td>0.94**</td>
<td>1.04</td>
<td>0.93</td>
</tr>
</tbody>
</table>

1 Rate ratios from Poisson regression analysis using 2006-2010 Medical Expenditure Panel Survey (MEPS).

2 Odds ratios from logistic regression analysis using 2006-2010 MEPS.

Statistically significant at the 0.05 (*) or 0.01 (**) level.
Distribution (%) of Nurses Across Employment Settings

<table>
<thead>
<tr>
<th>Work Setting</th>
<th>RNs</th>
<th>LPNs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OES</td>
<td>2008-10 ACS</td>
</tr>
<tr>
<td>Hospitals</td>
<td>62.0</td>
<td>60.4</td>
</tr>
<tr>
<td>Inpatient e</td>
<td>55.6</td>
<td>54.1</td>
</tr>
<tr>
<td>Emergency e</td>
<td>6.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Offices</td>
<td>7.4</td>
<td>9.8</td>
</tr>
<tr>
<td>Outpatient</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Home health</td>
<td>6.2</td>
<td>5.5</td>
</tr>
<tr>
<td>Government</td>
<td>5.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Nursing care facilities (skilled/long term)</td>
<td>5.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Residential care facilities</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Nurse education</td>
<td>3.1</td>
<td>1.2</td>
</tr>
<tr>
<td>School health</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Social work</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Public/community health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2.2</td>
<td>5.4</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Sources and notes:
* Occupational Employment Statistics.
* 2008-2010 pooled files of the American Community Survey, reported in HRSA 2013 nursing report.
* 2008 National Sample Survey of Registered Nurses.
* Nurses in teaching positions might be recorded in the ACS under teaching rather than under nursing.
* Estimated based on estimate that 89.6% of hospital nurses are working in inpatient settings and 10.4% are working in emergency settings, with nurses in administration allocated proportionately across settings (from the 2008 NSSRN).
* Numbers might not sum to 100% because of rounding.
Care Delivery Patterns: Converting Service Demand to Health Profession FTEs

• Translate demand for health care services into full time equivalent (FTE) providers
 – Example: 1,000 ambulatory visits to a pediatrician equates to approximately 0.23 FTE pediatrician; 1,000 hospital rounds equates to approximately 0.48 FTE pediatrician

• Data sources
 – Occupation/specialty/setting specific surveys and studies
 – National organizations (e.g., Medical Group Management Association’s Physician Compensation and Production Survey)
 – National ratios (e.g., home health aides to home health visits)
 – Reported statistics (e.g., nurse staffing ratios in nursing homes)
Conceptual Model for Health Workforce Supply

Current Active Supply + New Entrants - Attrition = Future Active Supply

Workforce Participation
Hours Worked
Change in Occupation, Specialty, or Education Level
Modeling Health Care Supply: Traditional Approach

• “Cohort” or “Inventory” model
 – By profession, age, gender, location (e.g., state), other (e.g., education level)
 – Estimate supply components (by provider characteristics)
 • # current providers
 • # new entrants to the health workforce each year
 • # retirements each year
 • Average hours worked

• Framework
 – Supply generally modeled separate from demand; static versus dynamic
 – Cohort averages applied (e.g., retirement probability, hours worked)
 – Cohort approach usually works fine for general forecasting
Microsimulation Approach to Supply Modeling

- Individual providers are unit of analysis
- Start with database of providers
 - Characteristics similar to cohort approach: age, gender, specialty/occupation, location
- Simulate provider choices (e.g., specialty, location, hours, retirement) over career
 - Estimate choice probability as function of provider characteristics and external factors
 - Example: work location choice is function of
 - Provider characteristics (age, gender, specialty, IMG)
 - Location characteristics (shortfall/surplus, earnings potential, other)
 - Policies (e.g., state scope of practice regulations for NPs/PAs)
 - Compare probability to random number generator to simulate choices
- New graduates: “create” new individuals
 - Characteristics reflect distribution of current/future graduates in terms of age, gender, specialty/occupation
Strengths and Limitations of Alternative Supply Approaches

<table>
<thead>
<tr>
<th>Features</th>
<th>Traditional (Cohort) Approach</th>
<th>Microsimulation Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplicity</td>
<td>Simpler</td>
<td>More complex</td>
</tr>
<tr>
<td>Data needs</td>
<td>Fewer data needs</td>
<td>Greater data needs</td>
</tr>
<tr>
<td>Flexibility for modeling policies and trends in supply determinants</td>
<td>Less flexible</td>
<td>More flexible</td>
</tr>
<tr>
<td>Static versus dynamic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Integrate supply & demand</td>
<td>Less flexible</td>
<td>More flexible</td>
</tr>
<tr>
<td>• Integrate economic factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research needs</td>
<td>Compute averages</td>
<td>Regression analysis or other approaches to calculate model parameters</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Can be developed in MS Excel spreadsheet</td>
<td>Requires more powerful software (e.g., SAS)</td>
</tr>
</tbody>
</table>
Supply-Related Data Sources

- **State licensure files**
 - Many states collect valuable information via survey at relicensure

- **National and profession surveys**
 - American Community Survey
 - HRSA Nurse Practitioner survey
 - AAMC Physician Workforce Survey
 - Individual profession surveys

- **Association/licensure databases**
 - American Medical Association Masterfile
 - American Dental Association Masterfile
 - National Commission on Certification of Physician Assistants Masterfile

- **Integrated Postsecondary Education Data System (IPEDS)**
Prediction Equations for Supply Decisions

• Supply data analyzed
 – American Community Survey for non-physicians
 – Profession-specific data (e.g., AMA Masterfile, ADA Masterfile)

• Modeling approach
 – Linear/non-linear regression models
 – Potential hourly earnings
 • Estimated using data on average earnings of employed people in same profession and geographic area, and person’s characteristics
 – Hours worked, probability active, separation rates
 • Estimated using data on age group, gender, unemployment rate, and potential hourly earnings
 – Working to incorporate local estimates of adequacy of supply (PUMA level, Public Use Micro Area)
Average Weekly Patient Care Hours Across Primary Care Physician Specialties

Source: FL Physician Survey, 2012-1013
Physician Retirement Rates

Source: Analysis of the 2006 AAMC Survey of Physicians Over Age 50, combined with CDC mortality rates.
Workforce Attrition for General & Family Practice Doctors in FL

Sources: CDC mortality rates combined with FL survey data (intention to retire in next 5 years)
RESOURCES AND TIPS FOR SUCCESSFUL WORKFORCE STUDY
Resource: State/Researcher Access to Nursing Component of Web-Based Workforce Model

- Web-based version of model currently being developed by HRSA and will be beta tested with select states
 - States have access to more accurate nurse workforce data through licensure process
 - States will have ability to upload their minimum data sets for nursing
 - States will have ability to run supply and demand scenarios related to nursing
Tips for Successful Study

• Up front, clearly define goals of the study
 – Primarily interested in forecasting? Interest in policy analysis?
• Use an advisory committee that includes clinicians
• Beware of small specialties (small sample size issues)
• Give the supply data a thorough cleaning
 – Some licensed providers might not be actively practicing even if their records indicate they are active
 – New licenses to the state workforce might include physicians in GME who do not intend to practice in the state, locum tenens, retirees
• Conduct sensitivity analyses and stress tests with the model
• Use the peer review process to check your proposed approach and findings
• Models and projections need periodic updating and refinement
 – Consider future data availability