Data Visualization: Strategies, Tips, and Tools

February 10th, 2016
Matt Jansen
Digital Research Services
UNC- Chapel Hill
University Library
http://library.unc.edu/hub/
Agenda

• Why visualize? Why not?
• Visualization Principles
 • Human Perception
 • Preattentive Processing
 • Reducing Distractions
 • Color
 • Tips and Tricks

• Tool Landscape
 • Spreadsheets
 • In-browser tools
 • Business Intelligence
 • Coding
 • Design

• Q&A
About Me

• University of North Carolina at Chapel Hill
 • Data Analyst at University Libraries

• Background
 • Social Sciences and Statistics

• Supporting visualization and data analysis
 • Across disciplines and experience levels
 • Workshops
 • Consultations
Why Visualize: Analysis and Dashboards

http://www.wunderground.com/
Why Visualize: Storytelling

http://upload.wikimedia.org/wikipedia/commons/2/29/Minard.png
Why Visualize: Human Cognitive Limitations

• Visual working memory is **small**
 • Numbers
 • Patterns

Why **not** a visualization?

- Does it beat a table?
 - e.g. Only a few values visualized
- Does it beat text?
- Does it oversimplify the issue?
 - Textual context
 - Statistics
- Models never tell the whole story
Basic Principles for Visualization

- Accuracy and Human Perception
- Preattentive Processing, or ‘Pop!’
- Minimizing Distractions
- Colors
Encoding data for accuracy

• Maximizing accuracy may **not** be your only goal

• More dimensions = Less accuracy
 • Length vs. Area
 • Area vs. Volume (avoid 3D effects)

Accuracy

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21.0%</td>
</tr>
<tr>
<td>B</td>
<td>37.0%</td>
</tr>
<tr>
<td>C</td>
<td>23.0%</td>
</tr>
<tr>
<td>D</td>
<td>19.0%</td>
</tr>
</tbody>
</table>

Bonus: 45 ways to communicate two quantities:
Preattentive Processing

• What ‘pops’ out in a visualization
• Survival instincts

981879263837498197949613897461394497
873218498762161799546213254989796531
859129939549719819295198197354687929
How many sevens appear above?
Preattentive processing

981879263837498197949613897461394497
873218498762161799546213254989796531
859129939549719819295198197354687929

How many sevens appear above?

981879263837498197949613897461394497
873218498762161799546213254989796531
859129939549719819295198197354687929
Preattentive processing

How many sevens appear above?

981879263837498197949613897461394497
873218498762161799546213254989796531
859129939549719819295198197354687929

981879263837498197949613897461394497
873218498762161799546213254989796531
859129939549719819295198197354687929
Distractions: Data-ink Ratio

• Edward Tufte
• Within reason, maximize:

\[
\text{Ink used to encode data values}
\]
\[
\text{Total ink in visualization}
\]

See the entire progression from the colorful, decorative chart on the left to the simpler chart above, and beyond at:
https://speakerdeck.com/cherdarchuk/remove-to-improve-the-data-ink-ratio
Distractions: Text Orientation

- Text is often one of the most important elements of a visualization
- Text should be as easily readable as possible

Color

• Don’t use Red-Green palettes
 • Indistinguishable to most common forms of colorblindness
• “Get it right in black and white”
• Color is often unnecessary or distracting
• Choosing a palette:
 • http://colorbrewer2.org/

http://unilytics.com/archives/4533
Tips and Tricks

• Draw pictures!
• Squint Test
• Small Multiples
Dear Data project
http://www.dear-data.com/week-34-a-week-of-urban-wildlife

Designing a visualization of library desk traffic at UNC
Squint Test

- Preattentive Processing
- Easy way to test what elements of a visualization ‘pop’ and what draws the eye of a new viewer

Executive Dashboard

<table>
<thead>
<tr>
<th>Key Figures</th>
<th>Data for the current year (CY)</th>
<th>Data for the previous year (PY)</th>
<th>% Change YTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>17,500</td>
<td>16,000</td>
<td>9.1%</td>
</tr>
<tr>
<td>Expenses</td>
<td>13,350</td>
<td>12,000</td>
<td>11.3%</td>
</tr>
<tr>
<td>Profit</td>
<td>4,150</td>
<td>4,000</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

Top 10 Routes (Past 30 Days)

1. San Francisco - Dallas
2. Los Angeles - Vegas
3. Dallas - Houston
4. Chicago - Dallas
5. Chicago - Orlando
6. Orlando - Dallas
7. Orlando - Atlanta
8. Atlanta - Orlando
9. Orlando - Miami
10. Orlando - Houston

Customer Satisfaction

- Customer Satisfaction: 43
- Flight Utilization: 163
- Return Flight: 0
- Revenue: 302
- Passenger Mile: 38
- Seat Miles: 201
- Revenue Passengers: 121

Website: http://blog.xlcubed.com/2008/08/the-dashbord-squint-test/
Small Multiples

• What you **can** fit in one visualization vs. what you **should**

• Usually, the simpler the better

• Alternatively, remove unnecessary variables
Tool Landscape

- Spreadsheets
- In-browser tools
- Business Intelligence Tools
- Coding
- Design
Spreadsheets

e.g. Microsoft Excel, LibreOffice, Open Office

• Pros:
 • You probably already have it
 • Your data probably passes through it already
 • Secure
 • Already integrated in workflows

• Cons:
 • Software not primarily designed for visualization
 • Static and local
In-Browser

e.g. Plot.ly, Datawrapper, Raw, Timeline.js

• Pros:
 • Often easiest, most accessible, quickest
 • Often free or cheap
 • Many tools available

• Cons:
 • Most subject to change (or disappearance)
 • Inflexibility
 • Specialized functionality
 • Strict data format needs
 • Dependence on other software
 • Too many options
In-Browser: Mapping

e.g. **ArcGIS Online**, CartoDB

- **Pros:**
 - Most flexible mapping tools
 - Includes other map-oriented functionality

- **Cons:**
 - Full benefits require a more advanced tool
 - ArcMap
 - QGIS
 - No other visualization types available
Business Intelligence

e.g. Tableau, Qlik, SAS Visual Analytics

Pros:
- Flexible, but don’t require much if any coding
- Point and click interfaces
- Good support/frequent updates
- Some free public options

Cons:
- Most expensive
 - IT support for large implementations
- Business-oriented user communities

Coding

e.g. **JavaScript (D3.js)**, R(ggplot), Python

- **Pros:**
 - Generally Free
 - If you have the time to learn it
 - Most flexible and powerful

- **Cons:**
 - Multiple languages necessary
 - Need to hire developer(s)
 - Time-intensive

```html
<!DOCTYPE html>
<meta charset="utf-8">
<title>Streamgraph</title>
<style>
body {
  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
  margin: auto;
  position: relative;
  width: 960px;
}

button {
  position: absolute;
  right: 30px;
  top: 10px;
}
</style>

<button onclick="transition()">Update</button>

<script src="/d3js.org/d3.v3.min.js"></script>

```var n = 20; // number of layers
m = 100; // number of samples per layer
stack = d3.layout.stack().offset("wiggle"),
layers0 = stack(d3.range(n).map(function() { return buplayer(m); })),
layers1 = stack(d3.range(n).map(function() { return buplayer(m); }));
```

[http://bl.ocks.org/mbostock/4060954](http://bl.ocks.org/mbostock/4060954)
Design
e.g. Adobe Creative Suite, Inkscape

- Pros:
  - Most aesthetically oriented
  - Can be combined with other tools

- Cons:
  - Expensive
  - Not data-oriented
    - ‘Infographic effect’
  - Static

Conclusions

• Easier tools come at a cost
• Time/Price:
  • Fancier is often more expensive
  • Are the free tools really free?
• Ever-growing spectrum
• Combining tools and knowing your data
• How much flexibility and fine tuning do you need?
Questions?
mtjansen@email.unc.edu
Learn more: Tools

• Tool lists:
  • [http://dirtdirectory.org/](http://dirtdirectory.org/)

• Map Galleries
  • CartoDB: [https://cartodb.com/gallery/](https://cartodb.com/gallery/)
  • ArcGIS Online: [http://www.arcgis.com/home/gallery.html#c=esri&t=maps&o=avgrating](http://www.arcgis.com/home/gallery.html#c=esri&t=maps&o=avgrating)

• Sample Galleries
  • Tableau: [https://public.tableau.com/s/gallery](https://public.tableau.com/s/gallery)
  • Plot.ly: [https://plot.ly/feed/](https://plot.ly/feed/)
Learn more:

**Theory**

Edward Tufte:  
*The Visual Display of Quantitative Information* (2001)  
*Visual Explanations* (1997)  
*Envisioning Information* (1990)

Colin Ware:  

**Practice**

Stephen Few:  
*Show Me the Numbers* (2004)  
*Now You See It* (2009)

Alberto Cairo:  